If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30u^2+6u=0
a = 30; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·30·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*30}=\frac{-12}{60} =-1/5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*30}=\frac{0}{60} =0 $
| y-34=-16 | | 4x-2=22- | | 3(2x)+1=125 | | 18u^2-24u=0 | | y+y+27=45 | | 6x+15=3x+33 | | 6x+15=3x=33 | | 4t/3-1=11 | | 6q+7=q | | (x-7)^3+54=0 | | 9e-7=7e-119e−7=7e−11 | | 14x-8=4-5x | | 7q-5=q | | 8(x+7)=7(X-7)= | | 9(5e-10)=6(9e-6) | | -15=n+6/2-5 | | 28=x/5-13 | | 2/c=1 | | |1-4t|=5 | | -15=n=6/2-5 | | x/3-12=36 | | 3(x-7)/4=x+2 | | (9x)^2+(18x)^2=26^2 | | 9(5e-10)=66(9e-6) | | 42x+49=27x+9 | | s-5/3=1 | | x/3+8=32 | | -18x=30=-150 | | -2x+2(-7x+7)=-130 | | 3x-19=7x-207 | | 2(2x+2)=-3x | | 6x+25x=20x+8 |